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The predator-prey-type ecosystem is investigated, taking into account the time-delay effect of the prey
population on the predator population, as well as random variations in the birth rate of the preys and the death
rate of the predators. The stochastic averaging procedure is applied to obtain the probability distributions of the
predator and prey populations at the state of statistical stationarity. It is found that two system parameters,
quantifying the effects of prey self-competition and the time delay, respectively, play the most important roles.
Results are also obtained from Monte Carlo simulations to compare with the analytical results.
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I. INTRODUCTION

The classical Lotka-Volterra-type model �1,2�, describing
the interaction between preys and predators in an ecosystem,
has been investigated extensively �3–6�. Some improvements
to the original model have been suggested, such as adding a
prey self-competition term �3�, a predator saturation term,
and a predator competition term �7,8�. In these models, the
interaction between predators and preys is instantaneous;
namely, an increase or decrease in prey population will affect
the growth rate of the predator population immediately. In
the real world, however, it is expected that the change of
prey population can affect the growth rate of the predator
population only after a time lag. Different types of models
have been introduced �4,5,9–15� to account for the time-
delay effect, and it has been found that the effect may indeed
change the system behaviors substantially. However, all the
above models were deterministic; namely, the coefficients in
the governing equations were assumed to be known con-
stants and the inputs to the system were assumed to be pre-
cisely known. Such assumptions are idealistic since changes
in the environment are always present, and in most cases,
they cannot be predicted in advance. It is of interest to note
that random variabilities of system properties have been con-
sidered in some earlier works �e.g., �4,16–21��, but only for
the non-delayed-type predator-prey models.

In the present paper, the stochastic modeling and analysis
are extended to delayed-type predator-prey ecosystems. The
stochastic averaging method of Stratonovich and Khasmin-
skii �22–24� is applied to obtain the stationary probability
distributions for the prey and predator populations. Monte
Carlo–type simulations are also carried out to substantiate
the accuracy of the analytical results.

II. DETERMINISTIC DELAYED-TYPE PREDATOR-PREY
SYSTEM

Without considering random uncertainty, or the effect of
time delay, the logistic model describing the dynamics of a
predator-prey ecosystem is governed by the following differ-
ential equations �3�:

ẋ1 = x1�a1 − sx1 − bx2� ,

ẋ2 = x2�− c + fx1� , �1�

where x1 and x2 are the population densities of preys and
predators, respectively, and a1, s, b, c, and f are positive
constants. It is noted that the term −s1x1

2 in the first equation
of Eqs. �1� reflects the effect of self-competition among the
preys. Without this term, the prey population will grow with-
out limit in the absence of predators, contrary to what is
expected of a real system. The term fx1x2 in the second equa-
tion of Eqs. �1� implies that the change in the prey density x1
will affect the change rate of the predator population instan-
taneously, which is unrealistic since it takes time for the
predator population to adjust to the change. On the other
hand, a growth in predator population will consume more
preys and lead to an immediate decrease of the prey popula-
tion. Thus, the delay effect occurs essentially in the predator
population. To account for such a time-delay effect, it has
been suggested that the term fx1x2 be changed to �4,5,10,11�

fx2�
−�

t

F�t − ��x1���d� , �2�

where F�t� is called the delay function and is suitably mod-
eled for a specific predator-prey system. Equation �2� implies
that this delayed effect depends not on the population at a
particular instant in the past; rather, it depends on the average
of the past populations. Thus, equation set �1� is modified to

ẋ1 = a1x1 − sx1
2 − bx1x2,

ẋ2 = − cx2 + fx2�
−�

t

F�t − ��x1���d� . �3�

It is convenient to write Eqs. �3� in an alternative form

ẋ1 = a1x1 − sx1
2 − bx1x2,

ẋ2 = − cx2 + fx2�
0

�

F���x1�t − ��d� �4�

and normalize function F�t� as follows:
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�
0

�

F���d� = 1. �5�

Define

� = �
0

�

�F���d� , �6�

which is a measure of the average delay time. Two reason-
able choices for F�t� are

F�t� =
1

�
e−t/�, �7�

F�t� =
4

�2 te−2t/�. �8�

Model �7� indicates that the effect of the prey population on
the predator population diminishes gradually with an increas-
ing time lag. In contrast, this effect reaches a maximum at a
certain time lag in the delay model �8�.

Expanding x1�t−�� in a Taylor series about �=0, taking
the first-order approximation, applying Eq. �6�, substituting
into the second equation of Eqs. �4�, and applying Eq. �6�,
we obtain

ẋ2 = − cx2 + fx1x2 − f�x2ẋ1. �9�

Combination of the first equation of Eqs. �4� and �9� results
in

ẋ1 = a1x1 − sx1
2 − bx1x2,

ẋ2 = − cx2 + f�1 − �a1�x1x2 + sf�x1
2x2 + bf�x1x2

2. �10�

It is noted that systems �3� and �10� have the same equilib-
rium point

x10 =
c

f
, x20 =

a

b
�11�

if

a = a1 −
sc

f
. �12�

System �10� will be used henceforth to investigate the effects
of the time delay. It is of interest to note that only the mean
value � of the delay function F�t� is required for the ensuing
analysis, not the specific form of F�t�.

It can be shown that the equilibrium point �x10,x20� given
in Eqs. �11� is asymptotically stable if �=0 and the other
parameters are not zero and that it is unstable if s=0 and the
other parameters are not zero. Therefore, while the prey self-
competition term stabilizes the system, the time-delay term
plays a role of destabilizing the system. Combining the two
effects, the entire region of positive s and � is divided into
stable and unstable subregions if other parameter values are
fixed. Figure 1 shows the two subregions for system �10�
with a1=0.9, b=1, c=0.5, and f =0.5. For a physically mean-
ingful and stable ecological system, the pair of s and � val-
ues must fall in the stable region.

Two trajectories of system �10� are depicted in Fig. 2,
beginning from the same initial point �3.0, 1.0� and corre-
sponding to two pairs of s and � values in the stable region,
not far from the stability boundary. The other parameter val-
ues are the same as those in Fig. 1—i.e., a1=0.9, b=1, c
=0.5, and f =0.5. It shows that the system reaches its equi-
librium slowly with many cycles of decreasing amplitude.
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FIG. 1. Stable and unstable regions for the deterministic system
�10� with a1=0.9, b=1, c=0.5, and f =0.5.
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FIG. 2. Trajectories of the deterministic system �10� for two
cases not far from the stability boundary.
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On the other hand, the system approaches its equilibrium
faster and with fewer cycles for cases also in the stable re-
gion, but far from the stability boundary, as shown in Fig. 3.
This is expected since systems farther from the stability
boundary are more stable.

III. STOCHASTIC MODEL FOR THE DELAYED
PREDATOR-PREY SYSTEM

The ecosystem model of equation set �10� shows that the
ecosystem will eventually reach the equilibrium point of
fixed populations of predator and prey. It fails to describe
some natural phenomena of an ecosystem; in particular, the
environment may change randomly, and it causes random
variations in the prey growth rate and the predator death rate.
Instead of the deterministic model �10�, a stochastic model is
proposed as follows:

Ẋ1 = X1�a1 − sX1 − bX2 + W1�t�� ,

Ẋ2 = X2�− c + f�1 − �a1�X1 + sf�X1
2 + bf�X1X2 + W2�t�� ,

�13�

where X1�t� and X2�t� are two stochastic processes, repre-
senting the prey and predator population densities, respec-

tively, and where W1�t� and W2�t� are two independent
Gaussian white noises in the Stratonovich sense �22�. The
tradition of using a capital letter to represent a random vari-
able or a stochastic process will also be followed henceforth.
The two independent white noises W1�t� and W2�t� are intro-
duced to model the random variations in the prey birth rate
and the predator death rate, respectively, and their autocorre-
lation functions are given by

E�Wi�t�Wi�t + ��� = Di����, i = 1,2, �14�

where Di �i=1,2� are known as the intensities of the white
noises and ���� is the Dirac delta function.

Using Eq. �12�, equation set �13� can be rewritten as

Ẋ1 = X1�a − bX2 −
s

f
�fX1 − c� + W1�t�� ,

Ẋ2 = X2��− c + fX1��1 + s�X1� + f�X1�bX2 − a� + W2�t�� .

�15�

A. Stochastic system behavior

Due to the random variabilities in the prey growth rate
and predator death rate, the behavior of the stochastic system
�13� is substantially different from that of its deterministic
counterpart. One significant change is that an equilibrium
state of the deterministic system no longer exists; it is re-
placed by a distribution of states described by probability or
statistical properties. Figure 4 illustrates such distributions
for the stochastic system �13� with a1=0.9, b=1, c=0.5, f
=0.5, D1=D2=0.01, and with two different sets of s and �
values. The case of s=0.07 and �=0.1 corresponds to a state
closer to the stability boundary shown in Fig. 1, while the
case of s=0.2 and �=0.2 corresponds to a state farther from
the boundary. As expected, the first case has a larger area of
distribution of the stationary states, indicating a less stable
system.

The above observation shows that probabilistic measures
are needed to describe the system random behaviors, which
will be investigated in the following sections.

B. Stochastic averaging

Consider first the deterministic conservative system

ẋ1 = x1�a − bx2� ,

ẋ2 = x2�− c + fx1��1 + s�x1� . �16�

System �16� has the same equilibrium point as that of sys-
tems �15� without random variations—namely, system �10�.
However, it is stable and nonasymptotic. System �16� pos-
sesses a first integral

r�x1,x2� = fx1 − c − c ln
fx1

c
+ bx2 − a − a ln

bx2

a
− cs�x1

+
1

2
fs�x1

2 +
c2s�

2f
. �17�

It can be shown that r�x1 ,x2�=0 at the equilibrium point
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FIG. 3. Trajectories of the deterministic system �10� for two
cases far from the stability boundary.
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�c / f ,a /b� and that r�x1 ,x2��0 for any other positive x1 and
x2. For a positive constant K, r�x1 ,x2�=K represents a peri-
odic trajectory. Its period can be determined from

T�K� = � dt = � dx2

x2�− c + fx1��1 + s�x1�
= � dx1

x1�a − bx2�
,

�18�

where x1 and x2 are related by r�x1 ,x2�=K. System �16� will
serve as a base for applying the stochastic averaging tech-
nique �22–24�.

Figure 5 depicts the equilibrium point O and three peri-
odic trajectories for system �16� with parameters a=0.9, b
=1, c=0.5, f =0.5, s=0.1, and �=0.2. The equilibrium point
O corresponds to K=0, and the three different periodic tra-
jectories correspond to three different K values, respectively.

Returning to the stochastic system �15�, its corresponding
Ito stochastic differential equations �e.g., �25�� are given by

dX1 = X1�a − bX2 +
s

f
�fX1 − c� +

1

2
D1�dt + 	D1X1dB1�t�

dX2 = X2��− c + fX1��1 + s�X1� + f�X1�bX2 − a� +
1

2
D2�dt

+ 	D2X2dB2�t� . �19�

The stochastic counterpart of Eq. �17� is

R�X1,X2� = fX1 − c − c ln
fX1

c
+ bX2 − a − a ln

bX2

a
− cs�X1

+
1

2
fs�X1

2 +
c2s�

2f
, �20�

which is a function of the stochastic processes X1 and X2;
hence, it is also a stochastic process. The Ito equation for
R�X1 ,X2� can be obtained by applying the Ito differential
rule �26�, resulting in

dR = �−
s

f
�fX1 − c�2�1 + s�X1� + f�X1�bX2 − a�2

+
1

2
D1X1�f − sc� + 2fs�X1� +

1

2
bD2X2�

�dt + 	D1�fX1 − c��1 + s�X1�dB1�t�

+ 	D2�bX2 − a�dB2�t� . �21�

Assume that the coefficients s of the self-competition term
and parameter � of the delay time are small and that the
intensities D1 and D2 of the white noises W1�t� and W2�t� are
also small. These assumptions are generally valid for real
ecosystems. Then the right-hand-side of Eq. �21� is small,
indicating that R�t� is a slowly varying random process. In
this case, the stochastic averaging method �22–24� is appli-
cable. The averaged version of Eq. �21� can be cast in the
standard form of an Ito equation,

dR = m�R�dt + ��R�dB�t� , �22�

in which m�R� and ��R� are called the drift coefficient and
the diffusion coefficient, respectively, and they are obtained
as follows:
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FIG. 4. Sample points of stochastic system �13� in the state of
statistical stationarity for two different sets of the parameter pair
�s ,��. The set of s=0.2 and �=0.2 is farther from the stability
boundary; the set of s=0.07 and �=0.1 is closer to the stability
boundary.
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FIG. 5. Equilibrium and periodic trajectories of the deterministic
system �16�.
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m�R� = −
s

f

�fX1 − c�2�1 + s�X1��t + f�
X1�bX2 − a�2�t

+
1

2
D1
X1�f − sc� + 2fs�X1��t +

1

2
aD2, �23�

�2�R� = D1
�fX1 − c�2�1 + s�X1�2�t + D2
�bX2 − a�2�t,

�24�

where 
�·��t denotes the time average in one quasiperiod,
defined as


�·��t =
1

T
� �·�dt =

1

T
� �·�dX2

X2�fX1 − c��1 + s�X1�

=
1

T
� �·�dX1

X1�a − bX2�
. �25�

For a given R, X1 and X2 are related according to Eq. �20�,
and the quasiperiod T is given in Eq. �18� with x1 and x2
replaced by their random counterparts X1 and X2, respec-
tively. In deriving Eq. �23�, use has been made of 
X2�t

=a /b according to the first equation of Eqs. �16�. The time-
average terms in Eqs. �23� and �24� can be calculated nu-
merically for given parameters a, b, c, f , s, and �.

C. Stationary probability densities

Equation �22� implies that R�t� is a one-dimensional Mar-
kov process. The stationary probability density of R�t�, de-
noted by p�r�, is governed by the following Fokker-Plank
equation �e.g., �24��

d

dr
�m�r�p�r�� −

1

2

d2

dr2 ��2�r�p�r�� = 0, �26�

where r is the state variable of the stochastic process R�t�.
Equation �26� can be solved to obtain

p�r� =
C

�2�r�
exp � 2m�r�

�2�r�
dr , �27�

where C is the normalization constant.
The joint probability density of R�t� and X1�t� can be

written as

p�r,x1� = p�r�p�x1�r� , �28�

where p�x1 �r� is the conditional probability density of X1�t�
given R�t�=r. It can be obtained as follows:

p�x1�r�dx1 =
dt

T�r�
=

dx1

�ẋ1�T�r�
=

dx1

�x1�a − bx2��T�r�
, �29�

where T�r� is given by Eq. �18�. Substituting Eq. �29� into
Eq. �28�,

p�r,x1� =
p�r�

�x1�a − bx2��T�r�
, �30�

in which x2 is treated as a function of x1 and r. Thus, the joint
probability density p�x1 ,x2� follows as

p�x1,x2� = p�r,x1� ��r,x1�
��x1,x2�

 =
p�r�

x1x2T�r�
, �31�

where
��r,x1�

��x1,x2� is the Jacobian of transformation and r is

treated as a function of x1 and x2 according to Eq. �17�. The
marginal probability densities of X1 and X2 can then be ob-
tained as

p�x1� = �
0

�

p�x1,x2�dx2, p�x2� = �
0

�

p�x1,x2�dx1. �32�

If no delay is taken into consideration—i.e., �=0—then Eq.
�27� results in

p�r� = CT�r�exp�− �r� , �33�

where � is a constant given by

� =
2sc

f�cD1 + aD2�
. �34�

Result �33� was obtained previously in �21� for the system
without considering the time delay.

Numerical calculations were carried out to obtain the re-
sults for the delayed stochastic system �13� with D1=D2
=0.01 and with other parameters the same as those used
when obtaining Fig. 1—i.e., a1=0.9, b=1, c=0.5, and f
=0.5. Figure 6 shows the stationary probability densities of
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FIG. 6. Probability densities of the prey population for different
values of the parameters s and �.
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the prey population for several different combinations of s
and � values within the stable region shown in Fig. 1. For a
given s, a larger � value results in higher probabilities in
both lower and higher prey populations, indicating a less
stable system. On the other hand, a system with a larger s is
more stable. Also depicted in the figure are results obtained
using the Monte Carlo simulation technique. The theoretical
and simulation results agree quite well. Figure 7 shows the
stationary probability densities of the predator population.
The same effects of the delay parameter � and the prey self-
competition parameter s can be observed.

Shown in Fig. 8 are the stationary probability densities of
the prey and predator populations for two different sets of s
and � values, corresponding to two different points in the
stable region. The point corresponding to s=0.2 and �=0.2 is
farther from the stability boundary, while the one corre-
sponding to s=0.07 and �=0.1 is closer to the stability
boundary. In the latter case, the probability densities have
lower peaks, which are compensated for with higher values
in the lower and higher population ranges. This is expected
since the system state is closer to the stability boundary and
is less stable.

IV. CONCLUSION

In the present investigation into the interaction between
the predators and preys in an ecosystem, the effects of time

delay in the interaction and the stochasticity in the environ-
ment are taken into consideration. The time delay is de-
scribed approximately by one parameter, and the stochastic
environment is characterized by two Gaussian white noises
in the prey birth rate and the predator death rate, respectively.
The mathematical procedure of stochastic averaging is ap-
plied in the analysis, and the probability distributions of the
predator and prey populations in the state of statistical sta-
tionarity are obtained theoretically. It is shown that the sys-
tem behaviors are substantially different when the stochastic
variabilities are introduced. A single stable equilibrium in the
deterministic system disappears. Instead, a distribution of
system states takes place, which agrees better with a real
ecosystem.

It is also found that the system stability depends on two
parameters: the prey self-competition parameter s and
the time-delay parameter �. The prey self-competition stabi-
lizes the system; i.e., stronger prey self-competition gives
rise to a more stable system. In contrast, time delay destabi-
lizes the system. A longer time delay results in a less stable
system.

In the present investigation, only certain system param-
eters are treated as being randomly varying with time.
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Similar approaches may apply to other system parameters or
for other ecosystems. The random variations are modeled as
white noises in the present investigation. They can also be
modeled as other type of stochastic processes, Gaussian or

non-Gaussian, broadband or narrow-band, according to the
observed statistical properties of the data. Theoretical inves-
tigations are important to find out what types of data are
most critically needed and what are not.
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